\qquad
Date
PERIOD
MS 4
Jake and Elysa took time measurements for their electronic car and recorded them below.

1. Directions: Find the average times for each setting on their potentiometer (PO ten-shee-o-meter"). Avg. Hint

Potentiometer Setting	Trial 1 Time (s)	Trial 2 Time (s)	Average Time (s)	Distance (cm)
1	4.75	4.8		150
2	4.3	4.26		150
3	3.67	3.87		150
4	2.12	4.36		150
5	2.84	2.64		150

2a. Graph their distance vs. average time for each potentiometer setting.

3. Calculate the average speed of their car at each setting.

You must show your work for credit!!

Potentiometer Setting	
1	Average Speed cm / s
2	
3	
4	
5	

4a. Graph their car's average speed and potentiometer setting.

Show your work here:

Graphing Hint

4b. What are the two variables in this experiment?

4c. Which variable is the independent variable? WHY?

5a. What is the relationship between the potentiometer setting and the speed of Jake and Elysa's car?

5b. Predict the speed of the car when they set the potentiometer to 4.5. (MUST SHOW WORK)

5c. Explain how you got your answer to 5 b.

6a. Imagine you could turn the potentiometer to 9 on this car. What would its average speed be? (MUST SHOW WORK)

6b. Explain how you got your answer.
7. Imagine you could turn the potentiometer to some setting n on this car. Create an expression or equation that would help you to find the speed at the nth setting.

